Note on the Subgraph Component Polynomial

نویسندگان

  • Yunhua Liao
  • Yaoping Hou
چکیده

Tittmann, Averbouch and Makowsky [The enumeration of vertex induced subgraphs with respect to the number of components, European J. Combin. 32 (2011) 954–974] introduced the subgraph component polynomial Q(G;x, y) of a graph G, which counts the number of connected components in vertex induced subgraphs. This polynomial encodes a large amount of combinatorial information about the underlying graph, such as the order, the size, and the independence number. We show that several other graph invariants, such as the connectivity and the number of cycles of length four in a regular bipartite graph are also determined by the subgraph component polynomial. Then, we prove that several well-known families of graphs are determined by the polynomial Q(G;x, y). Moreover, we study the distinguishing power and find simple graphs which are not distinguished by the subgraph component polynomial but distinguished by the characteristic polynomial, the matching polynomial and the Tutte polynomial. These are partial answers to three open problems proposed by Tittmann et al.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Graph Polynomial Approach to Primitivity

Recently, Tittmann et al. introduced the subgraph component polynomial and showed that its power for distinguishing graphs is quite different from the power of other graph polynomials that appear in the literature such as the matching polynomial, the Tutte polynomial, the characteristic polynomial, the chromatic polynomial, etc. The subgraph component polynomial enumerates vertex induced subgra...

متن کامل

Squares and primitivity in partial words

Recently, Tittmann et al. introduced the subgraph component polynomial and showed that its power for distinguishing graphs is quite different from the power of other graph polynomials that appear in the literature such as the matching polynomial, the Tutte polynomial, the characteristic polynomial, the chromatic polynomial, etc. The subgraph component polynomial enumerates vertex induced subgra...

متن کامل

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

Reconstructing subgraph-counting graph polynomials of increasing families of graphs

A graph polynomial P (G, x) is called reconstructible if it is uniquely determined by the polynomials of the vertex deleted subgraphs of G for every graph G with at least three vertices. In this note it is shown that subgraph-counting graph polynomials of increasing families of graphs are reconstructible if and only if each graph from the corresponding defining family is reconstructible from it...

متن کامل

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2014